OBSERVATIONS & RECOMMENDATIONS After reviewing data collected from **Highland Lake**, **Stoddard**, the program coordinators have made the following observations and recommendations. Thank you for your continued hard work sampling the lake this year! Your monitoring group sampled the deep spot **three** times this year and has done so for many years! As you know, conducting multiple sampling events each year enables DES to more accurately detect water quality changes. Keep up the good work! #### FIGURE INTERPRETATION #### CHLOROPHYLL-A Figure 1 and Table 1: Figure 1 in Appendix A shows the historical and current year chlorophyll-a concentration in the water column. Table 1 in Appendix B lists the maximum, minimum, and mean concentration for each sampling year that the lake has been monitored through VLAP. Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Algae (also known as phytoplankton) are typically microscopic, chlorophyll producing plants that naturally occur in lake ecosystems. The chlorophyll-a concentration measured in the water gives biologists an estimation of the algal concentration or lake productivity. The median summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 4.58 mg/m³. #### NORTH STATION The current year data (the top graph) show that the chlorophyll-a concentration *decreased* from **July** to **August**, and then *increased* from **August** to **September**. The historical data (the bottom graph) show that the **2008** chlorophyll-a mean is *slightly greater than* the state and similar lake medians. For more information on the similar lake median, refer to Appendix F. Overall, visual inspection of the historical data trend line (the bottom graph) shows a *decreasing* in-lake chlorophyll-a trend since monitoring began. Specifically the mean chlorophyll concentration has *improved* since **1988**. Please note that there is no **2001** data for the North Station. Therefore, after 10 *consecutive* years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean chlorophyll-a concentration since monitoring began. #### **SOUTH STATION** The current year data (the top graph) show that the chlorophyll-a concentration *decreased gradually* from **July** to **September**. The historical data (the bottom graph) show that the **2008** chlorophyll-a mean is *slightly greater than* the state and similar lake medians. For more information on the similar lake median, refer to Appendix F. Overall, the statistical analysis of the historical data shows that the chlorophyll-a concentration has **significantly decreased** (meaning **improved**) on average **by approximately 5.035 percent** per year during the sampling period **1994** to **2008**. Please refer to Appendix E for the detailed statistical analysis explanation and data print-out. We are encouraged by this improving trend and hope chlorophyll-a concentrations continue to decrease! While algae are naturally present in all lakes and ponds, an excessive or increasing amount of any type is not welcomed. In freshwater lakes and ponds, phosphorus is the nutrient that algae typically depend upon for growth in New Hampshire lakes. Algal concentrations may increase as nonpoint sources of phosphorus from the watershed increase, or as in-lake phosphorus sources increase. Therefore, it is extremely important for volunteer monitors to continually educate all watershed residents about management practices that can be implemented to minimize phosphorus loading to surface waters. #### **TRANSPARENCY** Figure 2 and Tables 3a and 3b: Figure 2 in Appendix A shows the historical and current year data for transparency with and without the use of a viewscope. Table 3a in Appendix B lists the maximum, minimum and mean transparency data without the use of a viewscope and Table 3b lists the maximum, minimum and mean transparency data with the use of a viewscope for each year that the lake has been monitored through VLAP. Volunteer monitors use the Secchi disk, a 20 cm disk with alternating black and white quadrants, to measure how far a person can see into the water. Transparency, a measure of water clarity, can be affected by the amount of algae and sediment in the water, as well as the natural color of the water. **The median summer transparency for New Hampshire's lakes and ponds is 3.2 meters.** ## **NORTH STATION** Current year data (the top graph) show that the non-viewscope inlake transparency *increased slightly* from **July** to **August**, and then *decreased slightly* from **August** to **September**. It is important to note that as the chlorophyll concentration **decreased** from **July** to **August**, the transparency **increased**, and as the chlorophyll **increased** from **August** to **September**, the transparency **decreased**. We typically expect this **inverse** relationship in lakes. As the amount of algal cells in the water **increases**, the depth to which one can see into the water column typically **decreases**, and vice-versa. The historical data (the bottom graph) show that the **2008** mean non-viewscope transparency is *slightly less than* the state and similar lake medians. Please refer to Appendix F for more information about the similar lake median. The current year data (the top graph) show that the viewscope in-lake transparency was *greater than* the non-viewscope transparency on the **August** sampling event. The transparency was **not** measured with the viewscope on the **July** or **September** sampling events. As discussed previously, a comparison of transparency readings taken with and without the use of a viewscope shows that the viewscope typically increases the depth to which the Secchi disk can be seen into the lake, particularly on sunny and windy days. We recommend that your group measure Secchi disk transparency with and without the viewscope on each sampling event. It is important to note that viewscope transparency data are not compared to a New Hampshire median or similar lake median. This is because lake transparency with the use of a viewscope has not been historically measured by DES. At some point in the future, the New Hampshire and similar lake medians for viewscope transparency will be calculated and added to the appropriate graphs. Overall, visual inspection of the historical data trend line (the bottom graph) shows a *relatively stable* trend for in-lake non-viewscope transparency. Specifically, the transparency has *remained* relatively stable ranging between approximately 1.97 and 3.75 meters since monitoring began in 1988. As previously discussed, after 10 *consecutive* years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean transparency since monitoring began. #### **SOUTH STATION** Current year data (the top graph) show that the non-viewscope inlake transparency **remained stable** from **July** to **August**, and then **decreased slightly** from **August** to **September**. The historical data (the bottom graph) show that the **2008** mean non-viewscope transparency is *slightly less than* the state and similar lake medians. Please refer to Appendix F for more information about the similar lake median. The current year data (the top graph) show that the viewscope in-lake transparency was *greater than* the non-viewscope transparency on the **August** sampling event. The transparency was **not** measured with the viewscope on the **July** or **September** sampling events. As discussed previously, a comparison of transparency readings taken with and without the use of a viewscope shows that the viewscope typically increases the depth to which the Secchi disk can be seen into the lake, particularly on sunny and windy days. We recommend that your group measure Secchi disk transparency with and without the viewscope on each sampling event. Overall, the statistical analysis of the historical data (the bottom graph) shows that the mean annual in-lake non-viewscope transparency has **not significantly changed** (either *increased* or *decreased*) since monitoring began. Specifically, the in-lake transparency has remained **relatively stable**, **ranging between approximately 1.67 and 3.10 meters** since **1994**. Please refer to Appendix E for the statistical analysis explanation and data print-out. Typically, high intensity rainfall causes sediment-laden stormwater runoff to flow into surface waters, thus increasing turbidity and decreasing clarity. Efforts should continually be made to stabilize stream banks, lake and pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake and pond. Guides to best management practices that can be implemented to reduce, and possibly even eliminate, nonpoint source pollutants, are available from DES upon request. #### **TOTAL PHOSPHORUS** Figure 3 and Table 8: The graphs in Figure 3 in Appendix A show the amount of epilimnetic (upper layer) phosphorus and hypolimnetic (lower layer) phosphorus; the inset graphs show current year data. Table 8 in Appendix B lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake has been sampled through VLAP. Phosphorus is typically the limiting nutrient for vascular plant and algae growth in New Hampshire's lakes and ponds. Excessive phosphorus in a lake or pond can lead to increased plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L. #### **NORTH STATION** The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration *remained stable* from **July** to **August**, and then *increased slightly* from **August** to **September**. The historical data show that the **2008** mean epilimnetic phosphorus concentration is **slightly less than** the state median and is **approximately equal to** the similar lake median. Refer to Appendix F for more information about the similar lake median. The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration *remained stable* from **July** to **August**, and then *decreased* from **August** to **September**. The hypolimnetic (lower layer) turbidity sample was *elevated* on the **August** sampling event (**5.8 NTUs**). This suggests that the lake bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling and/or that the lake bottom is covered by an easily disturbed thick organic layer of sediment. When the lake bottom is disturbed, phosphorus rich sediment is released into the water column. When collecting the hypolimnion sample, make sure that there is no sediment in the Kemmerer Bottle before filling the sample bottles. The historical data show that the **2008** mean hypolimnetic phosphorus concentration is *slightly less than* the state median and is *approximately equal to* the similar lake median. Please refer to Appendix F for more information about the similar lake median. Overall, the statistical analysis of the historical data shows that the phosphorus concentration in the epilimnion (upper layer) has **significantly decreased** (meaning **improved**) on average by **approximately 1.767 percent** per sampling year during the sampling period **1988** to **2008**. Please refer to Appendix E for the statistical analysis explanation and data print-out. We are encouraged this improving trend and hope that phosphorus concentrations continue to decrease! Overall, the statistical analysis of the historical data shows that the phosphorus concentration in the hypolimnion (lower layer) has **not significantly changed** since monitoring began. Specifically, the hypolimnetic phosphorus concentration has **fluctuated between approximately 10 and 38 ug/L** since **1988**. Please refer to Appendix E for the detailed statistical analysis explanation and data print-out. #### SOUTH STATION The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration **remained stable** from **July** to **August**, and then **increased slightly** from **August** to **September**. The historical data show that the **2008** mean epilimnetic phosphorus concentration is **approximately equal to** the state median and is **slightly greater than** the similar lake median. Refer to Appendix F for more information about the similar lake median. The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration was **13 ug/L** in **July**. Please note that the hypolimnetic phosphorus concentration was not measured in August or September since the station does not thermally stratify. The historical data show that the **2008** mean hypolimnetic phosphorus concentration is *slightly less than* the state and similar lake medians. Please refer to Appendix F for more information about the similar lake median. Overall, the statistical analysis of the historical data shows that the phosphorus concentration in the epilimnion (upper layer) and hypolimnion (lower layer) has **not significantly changed** since monitoring began. Specifically, the epilimnetic and hypolimnetic phosphorus concentrations have **remained relatively stable ranging between approximately 9 and 21 ug/L** since **1994** and **1996**. Please refer to Appendix E for the detailed statistical analysis explanation and data print-out. One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about the watershed sources of phosphorus and how excessive phosphorus loading can negatively affect the ecology and the recreational, economical, and ecological value of lakes and ponds. #### TABLE INTERPRETATION # > Table 2: Phytoplankton Table 2 in Appendix B lists the current and historical phytoplankton and/or cyanobacteria observed in the lake. Specifically, this table lists the three most dominant phytoplankton and/or cyanobacteria observed in the sample and their relative abundance in the sample. #### **NORTH STATION** The dominant phytoplankton and/or cyanobacteria observed in the August sample were Asterionella (Diatom), Chrysosphaerella (Golden-Brown), and Staurastrum (Green). #### **SOUTH STATION** The dominant phytoplankton and/or cyanobacteria observed in the August sample were *Chrysosphaerella* (Golden-Brown), *Asterionella* (Diatom), and *Mallomonas* (Golden-Brown). Phytoplankton populations undergo a natural succession during the growing season. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession. Diatoms and golden-brown algae populations are typical in New Hampshire's less productive lakes and ponds. # > Table 4: pH Table 4 in Appendix B presents the in-lake and tributary current year and historical pH data. pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 typically limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the state surface waters are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report. The mean pH at the **North Station** deep spot this year ranged from **5.73** in the hypolimnion to **5.94** in the epilimnion. The mean pH at the **South Station** deep spot this year ranged from **5.89** in the hypolimnion to **5.99** in the epilimnion, which means that the water is **slightly acidic**. Due to the state's abundance of granite bedrock and acid deposition received from snowmelt, rainfall, and atmospheric particulates, there is little that can be feasibly done to effectively increase lake pH. # > Table 5: Acid Neutralizing Capacity Table 5 in Appendix B presents the current year and historical epilimnetic ANC for each year the lake has been monitored through VLAP. Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is **4.8 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation about ANC, please refer to the "Chemical Monitoring Parameters" section of this report. The mean acid neutralizing capacity (ANC) of the **North Station** epilimnion (upper layer) was **1.7 mg/L**, and the mean ANC of the **South Station** epilimnion was **1.2 mg/L**, which are *less than* the state median. In addition, this indicates that the lake is *extremely vulnerable* to acidic inputs. ## > Table 6: Conductivity Table 6 in Appendix B presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current, which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column. The median conductivity value for New Hampshire's lakes and ponds is **38.4 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report. The mean annual **North Station** epilimnetic conductivity at the deep spot this year was **29.91 uMhos/cm**, and the mean annual **South Station** epilimnetic conductivity was **25.42 uMhos/cm**, which are #### **slightly less than** the state median. Overall, the conductivity in the lake and tributaries is relatively **stable** and **low**. Typically conductivity levels greater than 100 uMhos/cm indicate the influence of pollutant sources associated with human activities. These sources include septic system leachate, agricultural runoff, and road runoff which contains road salt during the spring snow-melt. We hope this trend continues! The conductivity continued to remain *greater than* the state median in **Dead Brook** and **North Inlet** this year. Typically, elevated conductivity indicates the influence of pollutant sources associated with human activities. These sources include failed or marginally functioning septic systems, agricultural runoff, and road runoff, which contains road salt during the spring snow-melt. New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could also contribute to increasing conductivity. In addition, natural sources, such as iron and manganese deposits in bedrock, can influence conductivity. We recommend that your monitoring group conduct stream surveys and rain event sampling along the tributaries with *elevated* conductivity so that we can determine what may be causing the increases. For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/c ategories/publications.htm, or contact the VLAP Coordinator. We also recommend that your monitoring group conduct a shoreline conductivity survey of the lake and the tributaries with *elevated* conductivity to help identify the sources of conductivity. To learn how to conduct a shoreline or tributary conductivity survey, please refer to the 2004 special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/c ategories/publications.htm or contact the VLAP Coordinator. # Table 7a and Table 7b: Total Kjeldahl Nitrogen and Nitrite+Nitrate Nitrogen Table 7a in Appendix B presents the current year and historical Total Kjeldahl Nitrogen and Table 7b presents the current year and historical nitrite and nitrate nitrogen. Nitrogen is another nutrient that is essential for the growth of plants and algae. Nitrogen is typically the limiting nutrient in estuaries and coastal ecosystems. However, in freshwater, nitrogen is not typically the limiting nutrient. Therefore, nitrogen is not typically sampled through VLAP. However, if phosphorus concentrations in freshwater are elevated, then nitrogen loading may stimulate additional plant and algal growth. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. During the most recent DES Lake Assessment Program survey, conducted during the Summer of **2007**, the ratio of the total nitrogen concentration to total phosphorus (TN:TP) concentration in the **North Station** epilimnion sample was **17**, and during the Summer of **2004**, the TN:TP concentration in the **South Station** epilimnion sample was **39**. Both samples were **greater than 15**, indicating that the lake is **phosphorus-limited**. This means that any additional **phosphorus** loading to the pond will stimulate additional plant and algal growth. Therefore, it is not critical to conduct nitrogen sampling. # > Table 8: Total Phosphorus Table 8 in Appendix B presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. Overall, the phosphorus concentration in the **tributaries** was **relatively low** this year, which is good news. However, we recommend that your monitoring group sample the major tributaries to the lake during snow-melt and periodically during rainstorms to determine if the phosphorus concentration is **elevated** in the tributaries during these times. Typically, the majority of nutrient loading to a lake or pond occurs in the spring during snow-melt and during intense rainstorms that cause soil erosion and surface runoff and within the watershed. For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator. The total phosphorus concentration in the **Rice Brook** tributary was **slightly elevated** (**33 ug/L**) on the **August** sampling event. The turbidity of the sample was also **slightly elevated** (**3.53 NTUs**), which suggests that the stream bottom may have been disturbed while sampling or that erosion is occurring in the watershed. When the stream bottom is disturbed, phosphorus rich sediment is released into the water column. When collecting tributary samples, please be sure to sample where the tributary is flowing and where the stream is deep enough to collect a "clean" sample free from organic debris and sediment. If you suspect that erosion is occurring in this area of the watershed, we recommend that your monitoring group conduct a stream survey and rain event sampling along this tributary. This additional sampling may allow us to determine what is causing the *elevated* levels of turbidity and phosphorus. For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator. Table 9 and Table 10: Dissolved Oxygen and Temperature Data Table 9 in Appendix B shows the dissolved oxygen/temperature profile(s) collected during 2008. Table 10 in Appendix B shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of sufficient amounts of dissolved oxygen in the water column is vital to fish and amphibians and bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. #### **SOUTH STATION** The dissolved oxygen concentration was *high* at all deep spot depths sampled on the **August** sampling event. Typically, shallow lakes and ponds that are not deep enough to stratify into more than one or two thermal layers will have relatively high amounts of oxygen at all depths. This is due to continual lake mixing and diffusion of oxygen into the bottom waters induced by wind and wave action. ## **NORTH STATION** The dissolved oxygen concentration was *lower in the hypolimnion* (*lower layer*) than in the epilimnion (upper layer) at the deep spot on the **August** sampling event. As stratified lakes and ponds age, and as the summer progresses, oxygen typically becomes **depleted** in the hypolimnion by bacterial decomposition. Specifically, the reduction of hypolimnetic oxygen is primarily a result of biological organisms using oxygen to break down organic matter, both in the water column and particularly at the bottom of the lake or pond where the water meets the sediment. When the hypolimnetic oxygen concentration is depleted to less than 1 mg/L, the phosphorus that is normally bound up in the sediment may be re-released into the water column, a process referred to as *internal phosphorus loading*. ## > Table 11: Turbidity Table 11 in Appendix B lists the current year and historical data for in-lake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation. Overall, the tributary and deep spot turbidity was *relatively low* this year, which is good news. However, we recommend that your group sample the pond and any surface water runoff areas during significant rain events to determine if stormwater runoff contributes turbidity and phosphorus to the pond. As discussed previously, the **North Station** hypolimnetic (lower layer) turbidity was *elevated* (5.8 NTUs) on the **August** sampling event. In addition, the hypolimnetic turbidity has been elevated on many sampling events during previous sampling years. This suggests that the lake bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling and/or that the lake bottom is covered by an easily disturbed, thick organic layer of sediment. When the lake bottom is disturbed, phosphorus rich sediment is released into the water column. When collecting the hypolimnion sample, make sure that there is no sediment in the Kemmerer Bottle before filling the sample bottles. ## > Table 12: Bacteria (E.coli) Table 12 in Appendix B lists the current year and historical data for bacteria (*E.coli*) testing. *E. coli* is a normal bacterium found in the large intestine of humans and other warm-blooded animals. *E.coli* is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **may** be present. If sewage is present in the water, potentially harmful disease-causing organisms **may** also be present. Bacteria sampling was not conducted this year. If residents are concerned about sources of bacteria such as failing septic systems, animal waste, or waterfowl waste, it is best to conduct *E. coli* testing when the water table is high, when beach use is heavy, or immediately after rain events. ## > Table 13: Chloride Table 13 in Appendix B lists the current year and the historical data for chloride sampling. The chloride ion (Cl-) is found naturally in some surfacewaters and groundwaters and in high concentrations in seawater. Research has shown that elevated chloride levels can be toxic to freshwater aquatic life. In order to protect freshwater aquatic life in New Hampshire, the state has adopted **acute and chronic** chloride criteria of **860 and 230 mg/L** respectively. The chloride content in New Hampshire lakes is naturally low, generally less than 2 mg/L in surface waters located in remote areas away from habitation. The median epilimnetic chloride value for New Hampshire lakes and ponds is **5 mg/L**. Higher values are generally associated with salted highways and, to a lesser extent, with septic inputs. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. Chloride sampling was **not** conducted during **2008**. Table 14: Current Year Biological and Chemical Raw Data Table 14 in Appendix B lists the most current sampling year results. Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year "raw," meaning unprocessed, data. The results are sorted by station, depth, and then parameter. #### > Table 15: Station Table As of the spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past and are most familiar with, an EMD station name also exists for each VLAP sampling location. Table 15 in Appendix B identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future. # **DATA QUALITY ASSURANCE AND CONTROL** #### **Annual Assessment Audit:** During the annual visit to your lake, the biologist conducted a sampling procedures assessment audit for your monitoring group. Specifically, the biologist observed the performance of your monitoring group and completed an assessment audit sheet to document the volunteer monitors' ability to follow the proper field sampling procedures, as outlined in the VLAP Monitor's Field Manual. This assessment is used to identify any aspects of sample collection in which volunteer monitors failed to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions. Overall, your monitoring group did an *excellent* job collecting samples on the annual biologist visit this year! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work! # Sample Receipt Checklist: Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if your group followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, improper sampling techniques. Overall, the sample receipt checklist showed that your monitoring group did a **very good** job when collecting samples this year! Specifically, the members of your monitoring group followed the majority of the proper field sampling procedures when collecting and submitting samples to the laboratory. However, the laboratory did identify a few aspects of sample collection that your group could improve upon, as follows: bottle used for pH, ANC, turbidity, conductivity sampling, **and** one "small brown" bottle used for phosphorus sampling at each tributary and deep spot location on each sampling event. In addition, please collect a chlorophyll sample in the "big brown" bottle on each sampling event. Collecting a complete set of samples on each sampling event will allow us to better determine the quality of the lake. ## **USEFUL RESOURCES** Acid Deposition Impacting New Hampshire's Ecosystems, DES fact sheet ARD-32, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/ard/documents/ard-32.pdf. Canada Geese Facts and Management Options, DES fact sheet BB-53, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/bb/documents/bb-53.pdf. Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, DES fact sheet WD-BB-9, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/bb/docume nts/bb-9.pdf. Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, DES fact sheet WD-SP-2, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-2.pdf. Road Salt and Water Quality, DES fact sheet WD-WMB-4, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/wmb/documents/wmb-4.pdf. Shorelands Under the Jurisdiction of the Comprehensive Shoreland Protection Act, DES fact sheet SP-4, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-4.pdf. Through the Looking Glass: A Field Guide to Aquatic Plants, North American Lake Management Society, 1988, (608) 233-2836 or www.nalms.org.